2015년 한국중학생 화학대회 (KMChC 2015)

주최: 대한화학회

주관: 대한화학회 화학올림피아드 위원회

후원: 다우케미칼 • LG화학 • 세진시아이

주의 사항

- 1. 시험시간은 오후 2시 ~ 4시까지 2시간입니다.
- 2. 감독관의 지시에 불응할 때 시험을 중단하고 퇴장시킬 수 있습니다.
- 3. 질문이 있는 경우 손을 들고 감독관이 올 때까지 기다립니다.
- 4. 첨부된 자료와 주기율표를 참조할 수 있습니다.
- 5. 핸드폰을 시계 대신 사용할 수 없으며, 핸드폰 사용은 부정행위로 간주합니다.
- 6. 계산기 등을 일체 사용할 수 없습니다.
- 7. 이 문제지는 표지 포함 총 26쪽입니다.
- 8. OMR 용지의 지정된 난에 수험번호, 소속 학교, 성명, 학년을 기입해야 하며, 답안 은 주어진 OMR 용지의 해당 문항번호 옆에 바르게 표기해야 합니다.
- 9. 답안은 반드시 컴퓨터용 수성 사인펜을 이용하여 작성해야 합니다. 답안지를 수정할 경우는 <u>수정테이프</u>를 사용해야 하며, 수정테이프가 없는 경우 손을 들어 감독 관에게 요청하십시오.
- 10. 각 문제의 배점은 3점으로, 오답은 -1점, 미기입은 0점으로 처리됩니다.

기체 상수 $R = 0.082 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

플랑크 상수 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$

빛의 속도 $c = 3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

아보가드로 수 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

패러데이 상수 F = 96485 C⋅mol⁻¹

전자의 전하량 $e = 1.60 \times 10^{-19} C$

전자의 질량 $m_e = 9.11 \times 10^{-31} \text{ kg}$

		87 F1 (223)	55 Cs 132.91	37 Rb 85.468	19 K 39.098	11 Na 22.990	3 Li 6.94	1 H
# Actinide series	* Lanthanide series	88 R2 (226)	56 Ba 137.33	38 S1 87.62	20 Ca 40.078	12 Mg 24.305	4 Be 9.0122	2
s ide	hanide les	89-103 #	57-71 *	39 Y 88.906	21 Sc 44.956	3		
89 Ac (227)	57 La 138.91	(265)	72 Hf 178.49	40 Z1 91.224	22 Ti 47.867	4		
90 Th 232.04	58 Ce 140.12	(892) Db	73 Ta 180.95	41 Yb 92.906	23 V 50.942	տ		
91 Pa 231.04	59 Pr 140.91	106 Sg (271)	74 W 183.84	42 Mo 95.96	24 C1 51.996	6		
92 U 238.03	060 Nd 144.24	107 Eh (270)	75 Re 186.21	7 . (98)	25 Min 54.938	7		
93 Vp (237)	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.845	ω		
94 Pi (244)	62 Sm 150.36	109 Mt (276)	77 Ir 192.22	45 Rh 102.91	27 Co 58.933	9		
95 Am (243)	63 Eu 151.96	(181) 2G (181)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693	10		
96 Cm (247)	64 Gd 157.25	111 Rg (280)	79 Au 196.97	47 A.g 107.87	29 Cu 63.546	11		
97 Bk (247)	65 Tb 158.93	112 Ch (285)	80 Hg 200.59	48 Cd 112.41	30 Zn 65.38	12		
(251) Cf 98	66 Dy 162.50	113 Uut (284)	81 T1 204.38	49 İn 114.82	31 Ga 69.723	13 Al 26.982	5 B 10.81	13
99 Es (252)	67 Ho 164.93	114 Uuq (289)	92 Pb 207.2	50 Sn 118.71	32 Ge 72.63	14 Si 28.085	6 C 12.011	14
100 F)n (257)	68 Ez 167.26	115 Uup (288)	83 Bi 208.98	51 Sb 121.76	33 As 74.922	15 P 30.974	7 N 14.007	ដ
101 Md (258)	69 Tm 168.93	116 Uuh (293)	Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.06	0 15.999	16
102 No (259)	70 Yb 173.05	117 Uus (294)	(210) 28 28	53 I 126.90	35 Ba 79.904	17 C1 35.45	9 F 18.998	17
103 L. (262)	71 Lu 174.97	118 Uuo (294)	86 Rr (222)	54 Xe 131.29	36 K 1 83.798	18 A1 39.948	20.180	18 1 He 4.0026

학생 A, B, C가 $0.50\,M$ HCl 수용액 $25.0\,$ mL를 $0.25\,M$ NaOH 수용액으로 적정했을 때 사용된 NaOH 수용액의 부피가 아래와 같다. 실험 결과의 해석으로 옳은 것은?

학생 1차 실험		2차 실험	3차 실험	
학생 A	49.0 mL	48.9 mL	49.1 mL	
학생 B	50.0 mL	49.0 mL	51.0 mL	
학생 C 48.0 mL		46.0 mL	51.0 mL	

- ① 정확도는 학생 A, 정밀도 는 학생 B가 가장 우수하다.
- ② 정밀도는 학생 A, 정확도는 학생 B가 가장 우수하다.
- ③ 정확도와 정밀도 모두 학생 B가 가장 우수하다.
- ④ 정확도와 정밀도 모두 학생 C가 가장 우수하다.

문제 2

다음은 화학반웅식의 균형을 맞추어야 하는 이유에 대한 학생들의 생각이다. <보기>에서 옳은 것만을 모두 고른 것은?

< 보 기 >

- ㄱ. 정확한 몰비만큼 시약을 넣지 않으면 화학 반응이 일어나지 않기 때문
- ㄴ. 한계 시약을 찾기 위해서
- ㄷ. 여러 생성물이 생길 때 생성물 사이의 비를 정확히 알 수 있기 때문
- 리. 이론적 수율을 구하기 위해서
- ① 7, 上 ② 上, 匚 ③ 匚, ㄹ ④ ㄴ, ㄷ, ㄹ

문제 3

다음 화합물 중에서 괄호 안 수소의 산화수가 옳지 않은 것은?

① LiH (-1)

② HCl (+1)

③ BeH₂ (-1)

4 LiAlH₄ (+1)

산성 용액에서 다음 산화-환원 반응의 균형을 가장 간단한 정수비로 맞추었을 때, 필요한 수소 양이온의 계수는?

 $\operatorname{Br}^{-}(aq) + \operatorname{MnO}_{4}^{-}(aq) \to \operatorname{Br}_{2}(l) + \operatorname{Mn}^{2+}(aq)$

1 2

② 3

3 5

4 16

문제 5

상온에서 He과 Ne이 1몰씩 동일한 용기에 각각 들어있다. <보기>의 물리량 중 He과 Ne의 값이 동일한 것은 모두 몇 개인가? (단, He과 Ne은 이상기체로 가정한다)

< 보 기 >

질량, 부분압, 평균 속력, 평균 운동에너지

1

2 2

③ 3

40 0

문제 6

다음 중 원자 반지름이 가장 큰 것은?

① Si

2 Mg

3 O

4 C

문제 7

다음 중 천연 DNA에서 발견되지 않는 원소는?

① N

② S

3 O

4 P

<보기>의 반응 중에서 발열 반응을 있는 대로 고른 것은?

<보기> $\neg. 2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ $\vdash. H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ \sqsubseteq . $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$

① ¬

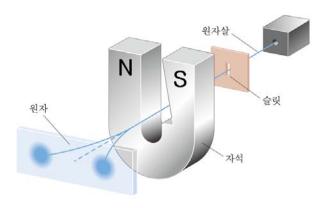
② ¬, ∟ ③ ⊏

④ ¬, ∟, ⊏

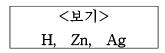
문제 9

수소 원자의 에너지 준위는 다음 식을 쓸 수 있다.

$$E_n = -\frac{R_H}{n^2}$$


여기서 R_{H} 는 리드버그 상수로, 2.2×10^{-18} J이며, n은 자연수이다. 바닥상태의 수소 원자를 이온화시키는 데 필요한 빛의 최대 파장 값과 가장 가까운 것은?

① 10 nm ② 50 nm ③ 90 nm ④ 130 nm


문제 10

CO의 쌍극자 모멘트는 0.1 D 이고(1 D = 3.3 × 10⁻³⁰ C m), CO 분자의 결합 길이가 110 pm이다. 옥테트 규칙을 만족하는 CO의 루이스 구조를 고려하였을 때, C 원자와 O 원자의 부분 전하는 각각 얼마인가?

1922년에 Stern과 Gerlach는, 어떤 원자의 원자살(많은 수의 원자가 진행하는 것)을 자기장 사이로 통과시키면, 원자살이 아래 그림과 같이 서로 다른 방향으로 나뉘는 것을 발견하였다.

<보기>의 원자 중, 원자살이 자기장을 통과한 후 그림과 같이 두 가지 방향으로 나 뉘는 것을 있는 대로 고른 것은?

① 없음

② H

3 H, Ag

4 H, Zn, Ag

문제 12

일정 압력 조건 하에서의 다음 반응 중 계에서 주위로 가장 크게 일을 한 반응은?

- ② $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$
- $3 H_2O(s) \rightarrow H_2O(l)$
- $\textcircled{4} \ \operatorname{H}_2(g) \ + \ \operatorname{F}_2(g) \ \to \ 2 \operatorname{HF}(g)$

다음 분자들 중 온실효과(greenhouse effect)를 유발할 수 있는 기체가 아닌 것은?

 \bigcirc H_2

② CO

 $3 H_2O$

4 CH₄

문제 14

아래의 두 열화학 반응식을 이용하여, 같은 온도, 압력 조건에서 $PCl_5(g) \rightarrow PCl_3(g)$ + $\operatorname{Cl}_2(g)$ 반응의 엔탈피 변화 $(\Delta H_{\mathbb{t}^8})$ 를 계산하면?

 $P_4(s) + 6Cl_2(g) \rightarrow 4PCl_3(g)$

 $\Delta H_1 = -2439 \text{ kJ}$

 $4PCl_5(g) \rightarrow P_4(s) + 10Cl_2(g)$ $\Delta H_2 = 3438 \text{ kJ}$

① -999 kJ ② 250 kJ

③ 999 kJ ④ 5877 kJ

문제 15

다음 화합물 1몰이 산소와 반응하여 완전 연소할 때 가장 적은 열량을 방출할 것으 로 예상되는 것은?

① C_2H_6 ② C_2H_5OH

 $3 \text{ CH}_3\text{CO}_2\text{H}$

④ CH₃CHO

문제 16

20.0 mL의 미지의 산(HA) 수용액을 1.0 M NaOH 수용액으로 적정하여 종말점까지 5.0 mL가 소모되었다. 적정 후 수용액의 온도는 3.0 ℃만큼 증가하였다. 적정 반응의 엔탈피 변화(△H°)는? (단, 모든 용액의 비열은 4 J/g·℃이며 밀도는 1.00 g/mL로 가 정한다)

① 0.3 kJ/mol ② 0.6 kJ/mol ③ 30 kJ/mol ④ 60 kJ/mol

이상 기체 1몰의 압력(P), 부피(V), 온도(T)는 항상 PV/RT = 1의 관계식을 만족한 다. 실제 기체 1몰의 경우 압력이 높거나 온도가 낮으면 PV/RT = 1의 관계식을 만 족하지 않는다. 아래 기체 중 200 기압에서 PV/RT의 값이 가장 작은 기체는?

 \bigcirc N₂

2 CH₄

3 CO_2

④ 이상 기체

문제 18

1기압, 27 °C인 1 L 용기 안에서 메테인(CH₄) 기체의 부분압력이 570 torr라면, 용기 안에 들어 있는 메테인 기체의 질량(g)에 가장 가까운 값은 ?

① 0.50

② 1.0

③ 4.0

4 8.0

문제 19

이상적인 거동을 하는 기체 분자의 충돌빈도 z와 평균자유행로(충돌과 충돌 사이에 이동하는 평균거리) λ 에 대한 <보기>의 설명 중 옳은 것만을 모두 고른 것은? (단, 용기 안의 기체 분자수는 변하지 않는다.)

(보기)

- ㄱ. 같은 부피에서 온도를 올리면 ∠가 증가한다.
- ㄴ. 같은 온도에서 압력을 높여도 *z*는 변하지 않는다.
- ㄷ. 같은 온도에서 압력을 두 배로 하면 ⋏는 줄어든다.
- ㄹ. 같은 부피에서 온도를 두 배로 하면 λ는 늘어난다.

① 7, ② 7, ② 2, ④ L, □

다음 금(Au) 원자의 오비탈을 낮은 에너지에서 높은 에너지를 가지는 순서로 배열한 것으로 옳은 것은? (n =주양자수, l = 각운동량 양자수)

(71) n = 3, l = 2

(나) n = 5, l = 0

(다) n = 4. l = 2

(라) n = 4, l = 1

- ① 가 < 라 < 나 < 다
- ② 가 < 라 < 다 < 나
- ③ 나 < 라 < 가 < 다 ④ 나 < 라 < 다 < 가

문제 21

어떤 원자에서 주양자수 = 3, 자기양자수 = 0, 스핀양자수 = 1/2을 가지는 전자는 최 대 몇 개인가?

① 1

2 2

3 3

4 4

문제 22

다음은 바닥 상태 원자의 전자배치이다. □에 해당하는 숫자의 합은?

- O: $[He]2s^2 \square p^4$
- Mg: $[Ne]3s^{\square}$
- P: $[Ne]3s^23p^{\square}$
- Mn: $[Ar]4s^2 \square d^5$
- ① 8

② 9

③ 10

4) 11

NO - 의 분자 오비탈 모형에 대한 설명으로 옳은 것은?

- ① NO -는 상자성을 나타낸다.
- ② NO -의 결합 에너지는 NO +보다 크다.
- ③ NO -의 결합 길이는 NO보다 짧다.
- ④ 전자가 점유된 오비탈 중 에너지 준위가 가장 높은 것은 결합성이다.

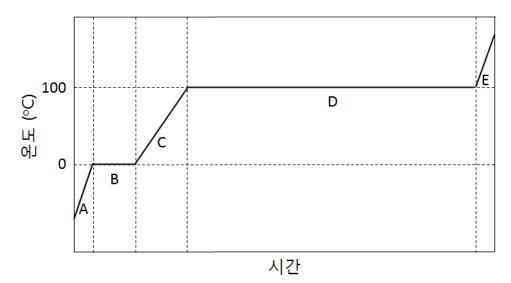
문제 24

다음 그림은 어떤 화합물의 루이스 구조 골격을 나타낸 것이다.

- 이 화합물에 대한 설명으로 옳지 않은 것은?
- ① 13개의 시그마 결합과 3개의 파이 결합이 있다.
- ② 4번의 탄소 원자는 결합각이 약 120° 인 sp^{2} 혼성 오비탈을 가진다.
- ③ 산소 원자는 sp 혼성 오비탈을 가진다.
- ④ 결합 길이는 1번과 2번 탄소 사이가 2번과 3번 탄소 사이보다 길다.

문제 25

다음 중 실제 구조를 설명하기 위하여 공명 구조를 사용해야 하는 화학종은?


- \bigcirc NO₂
- \bigcirc CO₂
- \Im XeF₂
- $4 I_3$

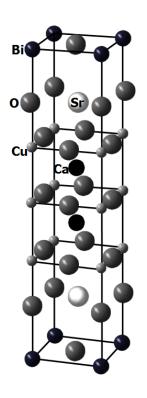
다음 분자들의 중심원자가 이웃하는 두 원자와 이루는 각도가 증가되는 순서대로 옳 게 표시된 것은?

- ① $H_2O < SO_3 < CO_2$
- ② H₂O < CO₂ < SO₃
- $3 SO_3 < CO_2 < H_2O$
- $4 SO_3 < H_2O < CO_2$

문제 27

다음은 얼음에 일정한 속도로 열을 공급할 때 나타나는 가열 곡선이다. 그래프에서 A와 E 영역 직선의 기울기는 C 영역 직선 기울기의 2배 정도이고, D 영역의 시간은 B 영역 시간의 7배 정도 이다. <보기>의 설명 중 옳은 것만을 모두 고른 것은?

-<보 기>-


가. 물의 비열은 얼음의 비열보다 크다.

나. 물의 비열은 수증기의 비열보다 크다.

다. 물의 증발열은 얼음의 융해열보다 크다.

- ① 가
- ② 가, 나
- ③ 나, 다
- ④ 가, 나, 다

다음은 가상의 초전도체 결정의 단위세포를 나타낸 그림이다. 이 결정의 단위세포 내 원자 Cu와 O의 최소 정수 비는?

① 1:2

2 1:3

3 2:9

4 6:11

문제 29

입방 밀집 구조(면심입방구조)로 배열된 음이온(Z) 사이에 양이온(X)이 사면체 구멍 의 1/8, 또 다른 양이온(Y)이 팔면체 구멍의 1/2을 채우고 있는 결정 화합물의 실험 식은?

- ① XY_2Z_2 ② XY_2Z_4 ③ X_2YZ_2 ④ X_2YZ_4

다음은 이온결합 화합물 MX_n (화학식량=150)이 수용액 중에서 이온화되는 반응을 나타낸다.

$$\mathrm{MX}_n(s) \xrightarrow{\mathrm{H_2O}(l)} \mathrm{M}^{n+}(aq) + n \mathrm{X}^{-}(aq)$$

 MX_n 과 포도당을 각각 물에 녹인 수용액에 대하여 표의 결과를 얻었다.

화합물	화학식량(g/mol)	용질 질량(g)	용매 질량(g)	어는점 내림(ΔT _f , ℃)
MX_n	150	200	2000	-3.6
포도당	180	90	2000	-0.45

두 용액 모두에서 라울의 법칙이 적용되고, MX_n 이 100% 해리되었다면, n 값은 얼마인가?

1

2 2

3 3

4 4

문제 31

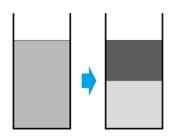
구리 광석 시료 0.50 g을 산에 완전히 녹인 후, 과량의 KI 용액을 첨가했더니 아래와 같은 알짜 반응이 일어났다.

$$2\mathrm{Cu}^{2^+}\ (aq)\ +\ 5\mathrm{I}^-\ (aq)\ \to\ \mathrm{I_3}^-\ (aq)\ +\ 2\mathrm{CuI}\ (s)$$

생성된 I_3 를 모두 I 로 다시 바꾸기 위해서는 다음 반응을 이용하는데, $0.020\,\mathrm{M}$ $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3$ 수용액 최소 $30.0\,\mathrm{ml}$ 가 필요하였다.

$${\rm I_3^-}(aq) \ + \ 2{\rm S}_2{\rm O_3}^{2^-}(aq) \ \to \ 3{\rm I}^-(aq) \ + \ {\rm S}_4{\rm O_6}^{2^-}(aq)$$

광석 안에 있는 구리가 모두 $CuCO_3$ 형태로 존재한다면, 광석 중에 포함된 $CuCO_3$ 의 질량 백분율에 가장 가까운 값은? ($CuCO_3$ 의 실험식량은 125 g/mol로 계산하고, 제시된 것 이외의 다른 반응은 무시한다.)

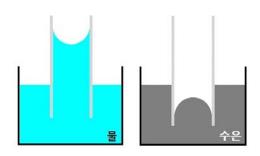

① 10%

② 15%

3 20%

4) 25%

균일하게 섞여 있는 물과 사염화탄소 혼합용액을 상온에서 가만히 놓아두면 다음 그 림과 같이 층 분리가 일어난다.



이 층 분리 과정의 엔탈피와 엔트로피 변화 부호로 옳은 것은?

- ① $\Delta H > 0$, $\Delta S > 0$ ② $\Delta H > 0$, $\Delta S < 0$
- ③ $\Delta H < 0$, $\Delta S > 0$ ④ $\Delta H < 0$, $\Delta S < 0$

문제 33

물과 수은 액체 속에 모세관을 삽입하면 아래 그림과 같이 물의 경우는 아래로 볼록 이며 위로 올라간 메니스커스, 수은의 경우는 위로 볼록이며 아래로 내려간 메니스 커스 형태를 보인다.

같은 실험을 달 표면에서 한다면, 모세관 속 메니스커스의 높이 변화가 지구에서와 비교하여, 어떻게 될까? (단, 지구와 같은 온도에서 실험하였고, 메니스커스 곡면의 곡률반경은 변하지 않았다고 가정한다.)

- ① 물: 내려감, 수은: 올라감 ② 물: 올라감, 수은: 내려감
- ③ 물과 수은 모두 올라감
- ④ 물과 수은 모두 내려감

HF 분자 간에 존재하는 가장 큰 분자간 힘의 크기(kJ/mol)로 가장 가까운 값은?

① 0.01

② 0.1

③ 1

4) 10

문제 35

어떤 화학반응의 정반응의 활성화 에너지는 10 kJ이고, ΔH_{반용}° = -200 kJ이다. 동일 한 조건에서 역반응의 활성화 에너지는 얼마인가?

① 10 kJ ② 190 kJ ③ 200 kJ ④ 210 kJ

문제 36

다음 설명 중 옳지 않은 것은?

- ① 0차 반응의 반감기는 반응물의 초기 농도와 무관하다.
- ② 1차 반응의 반응 속도는 시간에 따라 변한다.
- ③ 반응 차수는 정수가 아닐 수도 있다.
- ④ 정촉매는 반응 속도를 빠르게 한다.

문제 37

약산 HA의 해리 백분율은 다음과 같이 정의된다.

해리된 HA의 농도 초기 HA의 농도

0.50 M HA 수용액의 pH가 3.0일 때, HA의 해리 백분율은?

① 0.02%

② 0.20%

③ 2.0%

4 20%

표는 상온에서 공기를 구성하는 물질의 성분비와 정상 끓는점, 정상 녹는점을 나타 낸 것이다.

성 분	질소	산소	이산화탄소	아르곤	수증기
성분비(부피%)	78.0	20.7	0.03	0.09	1.18
정상 끓는점(℃)	- 196	-183	-78℃에서	-186	100
정상 녹는점(℃)	-210	-219	승화	-189	0

상온에서 공기가 주입된 풍선을 -190℃로 유지되는 냉각 장치에 넣어 부피가 더 이상 줄어들지 않을 때까지 두었다. 풍선의 최종 상태에 대한 설명으로 옳은 것은? (단, 전체 과정에서 풍선의 내부 압력은 1기압이다.)

- ① 질소의 부분 압력은 0.78기압이다.
- ② 풍선의 부피는 처음 부피의 78%이다.
- ③ 풍선 속에서 아르곤은 액체로 존재한다.
- ④ 풍선 속에는 고체, 액체, 기체 상태가 모두 존재한다.

문제 39

25℃에서 물과 에틸렌글리콜(EG)을 섞어 자동차용 부동액을 만들려고 한다. 표는 물과 EG의 몰질량과 밀도이다.

	몰질량(g/mol)	밀도(g/mL)
물	18	1.00
EG	62	1.11

다음의 세 가지 방법으로 만든 부동액의 어는점을 낮은 순서부터 옳게 배열한 것은?

A: 물과 EG를 1:1의 부피비로 섞는다.

B: 물과 EG를 1:1의 질량비로 섞는다.

C: 물과 EG를 1:1의 몰비로 섞는다.

① A, B, C

② B, A, C

3 C, A, B

4 C, B, A

35 °C에서 아세톤((CH₃)₂CO), 클로로폼(CHCl₃)의 증기 압력은 각각 360 torr, 300 torr 이다. 두 용매를 섞어 아세톤과 클로로폼 혼합 용액을 만들면, 두 분자 사이에는 그림과 같이 약한 수소 결합(···)이 형성된다.

이에 대한 <보기>의 설명이 참인지, 거짓인지 모두 옳게 답한 것은?

<보기>

가. 35 °C에서 1:1(몰수 비) 혼합 용액의 증기 압력은 330 torr 보다 크다.

나. 두 용매를 혼합하는 과정은 흡열 과정($\Delta H_{\Re^q} > 0$)이다.

거짓

	<u>가</u>	<u> </u>
a	<u>1</u>	اد.

참

문제 41

① 370 K

2

다음 자료를 이용하여 계산한 폼산(HCOOH)의 정상 끓는점에 가장 근접한 것은?

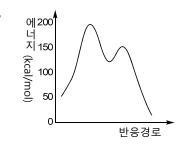
	$\Delta H_f^{\circ}(kJ/mol)$	S°(J/mol K)	
HCOOH(l)	- 410	130	
$\mathrm{HCOOH}(g)$	- 360	250	

② 420 K ③ 470 K ④ 520 K

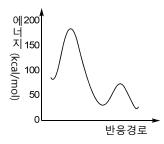
다음 중 분자간의 인력이 증가할 때 감소하는 것은?

- ① 기화열
- ② 꿇는점
- ③ 증기압
- ④ 숭화점

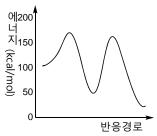
문제 43

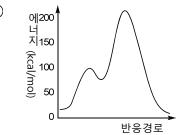

분자식이 C₃H₅Br인 화합물이 가질 수 있는 총 이성질체는 몇 개인가?

- ① 3
- 2 4
- 3 5
- 4 6


문제 44

다음은 2단계 화학반응들의 반응경로에 따른 에너지 변화를 나타낸 도표이다. 이들 중 반응 중간체를 분리해내기가 가장 좋은 반응은?


1


2

3

4

콜로이드는 용매 물질과 용질 물질로 구성된다. 에어로솔은 콜로이드의 한 종류이다. 다음 중 에어로솔의 용매 물질과 용질 물질의 상태를 각각 옳게 짝지은 것은?

	<u>용매 상태</u>	<u>용질 상태</u>
1	기체	액체
2	기체	기체
3	액체	액체
4	액체	기체

문제

46-47

다음 반응의 평형상수는 300 K에서 1.6 × 10⁴, 500 K에서 1.8 × 10⁻⁵이다.

2A ⇌ 2B + C

다음 질문에 답하라.

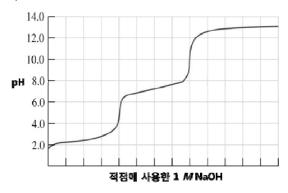
문제 46

300 K에서 A 0.0010 몰, B 5.0 몰, C 0.10 몰을 포함하는 1 L 용액의 반응은 어느 방향으로 진행되는가?

① 역반응 ② 정반응 ③ 평형 ④ 정지됨

문제 47

300 K에서 평형 상태인 반응기를 얼음 중탕에 넣어 식히면 일어나는 현상은?


① [A]가 증가한다.

② [B]가 증가한다.

③ 변화가 없다

④ 전체 혼합물 농도가 감소한다.

다음 그림은 어느 이양성자산을 $1.0\ M$ 수산화 소듐 수용액으로 적정한 적정곡선이

다음 중 이양성자산의 pK_{a2} 값이 포함된 범위는?

- ① 2~4
- ② 4~6
- 3 6~8
- **4** 9~11

문제 49

어떤 약산 HA 0.010 M 수용액에 대한 설명으로 옳지 않은 것은?

- ① [HA] + [A⁻] + [H₃O⁺] > 0.010 M이다.
- ② [HA] > [A⁻] 이다.
- ③ pH > 2 이다.
- ④ [H₃O⁺] < [A⁻]이다.

문제 50

다음 반응의 평형 상수를 H_2CO_3 의 산 해리 상수 $(K_{al},\ K_{a2})$ 및 물의 이온곱 상수 $(K_{\rm w})$ 를 이용하여 옳게 나타낸 것은?

 $HCO_3^-(aq) + OH^-(aq) \rightleftharpoons CO_3^{2-}(aq) + H_2O(l)$

- ① $K_{\rm al}/K_{\rm w}$

[KMChC 2015]

문제 51

 $pK_a = 4$ 인 산(HA) $0.1\,M$ 수용액을 $0.1\,M$ NaOH 수용액으로 적정하고자 한다. 다음 중 적절한 지시약은? (괄호안의 값은 지시약의 변색범위이다.)

- ① 티몰 블루 (pH 1-3)
- ② 메틸 오렌지 (pH 3-5)
- ③ 메틸 레드 (pH 4-6)
- ④ 페놀프탈레인 (pH 8-10)

문제 52

선 표시법으로 나타낸 다음 전지의 전위가 25°C에서 a V로 측정되었다. 이 때 산화 전극 전해질 용액의 pH는?

 $Pt(s) \mid H_2(g, 1.0 \text{ atm}) \mid H^{+}(aq, x M) \mid H^{+}(aq, 1.0 M) \mid H_2(g, 1.0 \text{ atm}) \mid Pt(s)$

① a/0.0592 ② -a/0.0592

3) 2a/0.0592 4) -2a/0.0592

문제 53

[Ag⁺] = 0.1 M이고 [M²⁺] = 0.01 M일 때, 25℃에서 다음 전지 반응의 전위는 0.46 V이다.

$$2Ag^+ + M(s) \rightarrow 2Ag(s) + M^{2+}$$

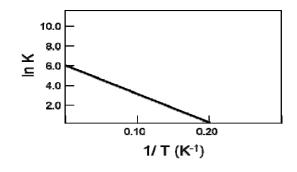
25℃에서 반쪽 반응 M²⁺ + 2e⁻ ⇌ M(s)의 표준 환원 전위 (E°)는? (단, Ag⁺ + e⁻ ⇌ Ag(s)의 표준 환원 전위는 0.80 V이다.)

① 0.34 V

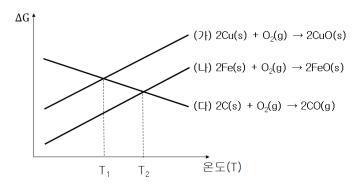
② 0.40 V

③ 1.26 V

4 1.32 V


수용액에서 $Ca_3(PO_4)_2$ 의 몰용해도(s)는? (단, K_{sp} 는 $Ca_3(PO_4)_2$ 의 용해도곱 상수)

- $\textcircled{1} \quad (\frac{K_{sp}}{4})^{\frac{1}{3}} \qquad \qquad \textcircled{2} \quad (\frac{K_{sp}}{27})^{\frac{1}{4}} \qquad \qquad \textcircled{3} \quad (\frac{K_{sp}}{108})^{\frac{1}{5}} \qquad \qquad \textcircled{4} \quad (\frac{K_{sp}}{6})^{\frac{1}{5}}$


문제 55

어떤 반응의 평형상수(K)를 온도에 따라 측정하여 그림과 같은 결과를 얻었다. 이 반응의 표준 반응 엔트로피 변화 $(\Delta S^{\circ})[J/K \cdot mol]$ 로 가장 가까운 값은? (단, 측정에 사용된 온도 범위에서 이 반응의 표준 반응 엔탈피 변화 (ΔH°) 와 ΔS° 는 일정하다고 가 정한다.)

- ① 0.20
- 2 6.0
- 3 30
- **4**) 50

그림은 세 반응에 대하여 온도에 따른 반응의 자유 에너지 변화 (ΔG) 를 나타낸 것이다.

이에 대한 <보기>의 설명 중 옳은 것의 개수는?

〈보기〉

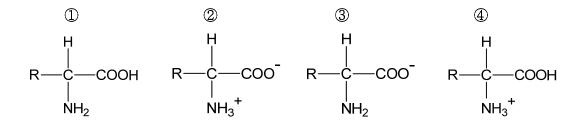
기. 세 반응 중 반응의 엔트로피 변화(ΔS)가 양수인 것은 둘이다.

∟. T < T₁ 에서, FeO(s) + C(s) → Fe(s) + CO(g) 반응은 자발적이다.

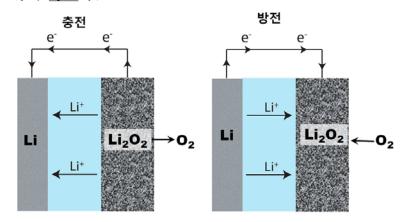
 Γ . $T > T_2$ 에서, $CuO(s) + C(s) \rightarrow Cu(s) + CO(g)$ 반응은 비자발적이다.

① 1

2 2


3 3

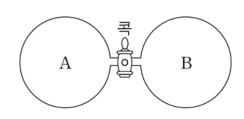
4 0


문제 57

그림은 단백질의 구성 성분인 아미노산의 구조이다.

아미노산은 물에 녹아 있을 때, 수용액의 pH에 따라 존재하는 형태가 다르다. 다음 중 중성 수용액에서 아미노산의 주된 형태는?

리튬공기전지(lithium air battery)는 음극으로 리튬을 사용하고 양극은 공기중의 산소를 활용하는 전지로 리튬이온전지보다 높은 에너지밀도를 가져 주목받고 있다. 리튬공기전지가 충전/방전될 때는 아래 그림과 같은 산화환원 반응이 일어난다. 다음설명 중 옳지 않은 것은?



- ① 방전이 수행될 때 Li 전극은 산화전극(anode)이다.
- ② 방전이 수행될 때 Li 전극의 질량은 감소한다.
- ③ 충전이 수행될 때 Li₂O₂ 전극의 질량은 감소한다.
- ④ 충전 전후에 전지의 질량은 동일하다.

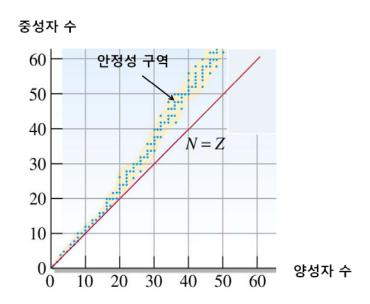
문제 59

아래 그림과 같이 분리되어 있는 두 개의 용기에 기체 A와 B를 각각 넣고, 콕을 열어 다음의 반응을 시켰다. 표는 A와 B의 초기 질량에 따른 생성물 C의 질량 또는 기체 B와 C의 부분 압력비 $(P_B:P_C)$ 를 나타낸 것이다.

$$A(g) + B(g) \rightarrow c C(g)$$
 (c는 반응 계수이다.)

초기 질량(g)		반응이 된	관결된 후
А	В	C의 질량(g)	부분 압력비(<i>P</i> _B : <i>P</i> _C)
2	X	3	
4	X	6	
6	X	6	
8	8		1:2

반응 계수 c는?(단, 용기의 부피와 온도는 일정하다.)


1

2 2

3 3

4 4

안정한 원자핵을 대상으로 양성자(Z)와 중성자(N)를 x 및 y 축으로 하여 점을 찍으면 아래의 그림에서와 같이 일정한 구역에 밀집됨을 알 수 있는데, 이것을 안정성구역(belt of stability)이라 한다. 그리고 안정성구역 밖에 위치하는 모든 원자핵은불안정하여 a-방출, β -방출, 양전자 방출, 전자포획 등 네 가지 방법으로 방사성 붕괴를 한다. 불안정한 $\frac{84}{40}$ Zr 원자핵에서 가능하다고 판단되는 방사성 붕괴만을 모두 모은 것은? (양전자 방출은 핵 중의 양성자가 중성자로 변화되면서 +전하를 띤 입자를방출하는 과정, 전자포획은 핵 중의 양성자가 중성자로 변화되면서 전자를 흡수하는 과정이다.)

- ① a-방출, β-방출
- ③ 양전자 방출, 전자포획
- ② β -방출, 양전자 방출
- ④ β-방출, 전자포획

수고 많이 했습니다!